Comprehensive Reduced-Order Models Of Electrostatically Actuated MEMS Switches And Their Dynamics Including Impact And Bounce
نویسندگان
چکیده
As MEMS technology develops it is becoming better understood that MEMS designers must account for the large uncertainties characteristic of the relevant manufacturing processes. Uncertainty quantification tasks the designer with evaluating many different possible outcomes from the manufacturing process which creates a demand for models that are accurate and comprehensive, yet fast to evaluate. This work presents a comprehensive reduced-order model of electrostatically actuated switches incorporating a range of effects that are typically included only in FE modeling codes. Specifically, the model accounts for variable electrode geometry, stretching of centerline or large displacement effects, fringing field, squeeze film and rarefied gas damping, and allows for elastic contact with the dielectric substrate. Individual compact models for each of these effects are taken from literature and included in the model for the system. The dielectric substrate is modeled as an elastic foundation. The resulting partial differential equation for the switch modeled as a beam is discritized via a Galerkin method into ordinary differential equations for modal amplitudes. The Galerkin method uses the linear un-damped mode shapes of the beam to approximate the solution. Both cantilever and fixed-fixed type switches are analyzed. Static equilibrium solutions as a function of the applied voltage are developed along with their stability. Static pull-in voltages, first time of switch closure, and voltage for lift-off are studied with the model. To capture the contact ∗Address all correspondence to this author. dynamics, the contact condition is evaluated with the substrate divided into a large number of elements and the contact force is projected on to the beam basis functions. In the case of cantilever geometry and slow voltage variations, three stable regimes of contact configuration and hysteresis between them are demonstrated.
منابع مشابه
Mechanical Behavior of an Electrostatically-Actuated Microbeam under Mechanical Shock
In this paper static and dynamic responses of a fixed-fixed microbeam to electrostatic force and mechanical shock for different cases have been studied. The governing equations whose solution holds the answer to all our questions about the mechanical behavior is the nonlinear elasto-electrostatic equations. Due to the nonlinearity and complexity of the derived equations analytical solution are ...
متن کاملDynamic and Static Pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping
In the current study, the effects of Casimir force and squeeze film damping on pull-in instability and dynamic behavior of electrostatically actuated nano and micro electromechanical systems are investigated separately. Linear elastic membrane theory is used to model the static and dynamic behavior of the system for strip, annular and disk geometries. Squeeze film damping is modeled using nonli...
متن کاملApplication of Piezoelectric and Functionally Graded Materials in Designing Electrostatically Actuated Micro Switches
In this research, a functionally graded microbeam bonded with piezoelectric layers is analyzed under electric force. Static and dynamic instability due to the electric actuation is studied because of its importance in micro electro mechanical systems, especially in micro switches. In order to prevent pull-in instability, two piezoelectric layers are used as sensor and actuator. A current amplif...
متن کاملDesign, Analysis and Comparison of Various MEMS Switches for Reconfigurable Planar Antenna
This paper presents design and analysis of a novel beam for electrostatically actuated Radio Frequency Micro Electro Mechanical Systems (RF MEMS) shunt switches. In the proposed beam design, geometrical variations in terms of structure shape, material, gap, introduction of holes and changing the length and width of anchor have led to good RF performance. The holes in the beam (maximum up to 60%...
متن کاملModeling and Fabrication of RF MEMS Switches
MicroElectroMechanical Systems (MEMS) are becoming increasingly important. The benefits of MEMS include small size, low weight, and low cost. In addition, Radio Frequency MEMS switches offer low insertion loss, high quality factor, low power, high isolation, and broadband frequency performance. Modeling of electrostatically-actuated, capacitive switches is reviewed and fabrication steps are des...
متن کامل